Advertisements
Advertisements
Question
Multiply: \[\left( \frac{x}{7} + \frac{x^2}{2} \right)by\left( \frac{2}{5} + \frac{9x}{4} \right)\]
Solution
To multiply the expressions, we will use the distributive law in the following way:
\[\left( \frac{x}{7} + \frac{x^2}{2} \right)\left( \frac{2}{5} + \frac{9x}{4} \right)\]
\[ = \frac{x}{7}\left( \frac{2}{5} + \frac{9x}{4} \right) + \frac{x^2}{2}\left( \frac{2}{5} + \frac{9x}{4} \right)\]
\[ = \frac{2x}{35} + \frac{9 x^2}{28} + \frac{x^2}{5} + \frac{9 x^3}{8}\]
\[ = \frac{2x}{35} + \left( \frac{45 + 28}{140} \right) x^2 + \frac{9 x^3}{8}\]
\[ = \frac{2x}{35} + \frac{73 x^2}{140} + \frac{9 x^2}{8}\]
Thus, the answer is \[\frac{2x}{35} + \frac{73 x^2}{140} + \frac{9 x^3}{8}\].
APPEARS IN
RELATED QUESTIONS
Simplify combining like terms: (3y2 + 5y - 4) - (8y - y2 - 4)
Add: 14x + 10y - 12xy - 13, 18 - 7x - 10y + 8xy, 4xy
Subtract: -m2 + 5mn from 4m2 - 3mn + 8
Add the following algebraic expression:
\[\frac{11}{2}xy + \frac{12}{5}y + \frac{13}{7}x, - \frac{11}{2}y - \frac{12}{5}x - \frac{13}{7}xy\]
Subtract:
2x3 − 4x2 + 3x + 5 from 4x3 + x2 + x + 6
Add:
9p + 16q; 13p + 2q
Add: 7mn, 5mn
Find the sum of the following expressions
mn + t, 2mn – 2t, – 3t + 3mn
Find the sum of the following expressions
5xyz – 3xy, 3zxy – 5yx
The sum of –7pq and 2pq is ______.