Advertisements
Advertisements
प्रश्न
If \[x^2 + \frac{1}{x^2} = 18,\] find the values of \[x + \frac{1}{x} \text { and } x - \frac{1}{x} .\]
उत्तर
Let us consider the following expression: \[x + \frac{1}{x}\]
Squaring the above expression, we get:
\[\left( x + \frac{1}{x} \right)^2 = x^2 + 2 \times x \times \frac{1}{x} + \left( \frac{1}{x} \right)^2 = x^2 - 2 + \frac{1}{x^2} [(a + b )^2 = a^2 + b^2 + 2ab]\]
\[ \Rightarrow \left( x + \frac{1}{x} \right)^2 = x^2 + 2 + \frac{1}{x^2}\]
\[\Rightarrow \left( x + \frac{1}{x} \right)^2 = 20\] (\[\because\] \[x^2 + \frac{1}{x^2} = 18\])
\[\Rightarrow x + \frac{1}{x} = \pm \sqrt{20}\] (Taking square root of both sides)
Now, let us consider the following expression:
\[x - \frac{1}{x}\]
Squaring the above expression, we get:
\[\left( x - \frac{1}{x} \right)^2 = x^2 - 2 \times x \times \frac{1}{x} + \left( \frac{1}{x} \right)^2 = x^2 - 2 + \frac{1}{x^2} [(a - b )^2 = a^2 + b^2 - 2ab]\]
\[ \Rightarrow \left( x - \frac{1}{x} \right)^2 = x^2 - 2 + \frac{1}{x^2}\]
\[\Rightarrow \left( x - \frac{1}{x} \right)^2 = 16\] (\[\because\] \[x^2 + \frac{1}{x^2} = 18\])
\[\Rightarrow x - \frac{1}{x} = \pm 4\] (Taking square root of both sides)
APPEARS IN
संबंधित प्रश्न
Factorize x2 - y2 - 4xz + 4z2
Factorize the following expressions:
y3 +125
Factorize the following expressions
64a3 – b3
Factorize the following expressions:
x3 + 6x2 +12x +16
Write the value of 253 − 753 + 503.
Divide: n2 - 2n + 1 by n - 1
Divide: 2m3n5 by - mn
The constant term of the expression 2y – 6 is _________
If x = 2 and y = 3, then find the value of the following expressions
4y – x
Shiv works in a mall and gets paid ₹ 50 per hour. Last week he worked for 7 hours and this week he will work for x hours. Write an algebraic expression for the money paid to him for both the weeks.