Advertisements
Advertisements
प्रश्न
If x + y = 4 and xy = 2, find the value of x2 + y2
संक्षेप में उत्तर
उत्तर
We have:
\[\left( x + y \right)^2 = x^2 + 2xy + y^2 \]
\[ \Rightarrow x^2 + y^2 = \left( x + y \right)^2 - 2xy\]
\[\Rightarrow x^2 + y^2 = 4^2 - 2 \times 2\] (\[\because\] \[x + y = 4 \text { and } xy = 2\])
\[\Rightarrow x^2 + y^2 = 16 - 4\]
\[ \Rightarrow x^2 + y^2 = 12\]
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
Factorize `x^2 + 2sqrt3x - 24`
Factorize `2x^2 - 5/6x + 1/12`
Factorize `5sqrt5x^2 + 20x + 3sqrt5`
Factorize 64a3 +125b3 + 240a2b + 300ab2
If x2 + y2 = 29 and xy = 2, find the value of x4 + y4 .
The factors of 8a3 + b3 − 6ab + 1 are
If x3 − 3x2 + 3x − 7 = (x + 1) (ax2 + bx + c), then a + b + c =
Evaluate: (3c - 5d)(4c - 6d)
Evaluate: (4x2 - 4x + 1)(2x3 - 3x2 + 2)
Divide: 5x2 - 3x by x