Advertisements
Advertisements
प्रश्न
Write the value of 253 − 753 + 503.
उत्तर
The given expression is
`25^3 -75^3 + 50^3`
Let a =25, b =-75 and c = 50. Then the given expression becomes
`25^3 - 75 + 50^3 = a^3 +b^3 + c^3`
Note that
`a+b+c = 25 + (-75) + 50`
` = 25 - 75 + 50`
`= 0`
Recall the formula
`a^3 + b^3 + c^3 - 3abc = (a+b+c)(a^2 + b^2+ c^2 - ab - bc - ca)`
When a + b + c = 0 , this becomes
`a^3 + b^3 + 3abc= 0.(a^2 +b^2 + c^2 - ab - bc - ca)`
` =0 `
`a^3 + b^3 + c^3 = 3abc`
So, we have the new formula
`a^3 + b^3 + c^3 = 3abc`, when a+ b + c = 0.
Using the above formula, the value of the given expression is
`a^3 + b^3 + c^3 = 3abc`
`25^3 - 75^3 + 50^3 = 3.(25).(-75).(50)`
`25^3 - 75^3 + 50^3 = -281250`
APPEARS IN
संबंधित प्रश्न
Get the algebraic expression in the following case using variables, constants and arithmetic operations.
Sum of numbers a and b subtracted from their product.
Factorize `2x^2 + 3sqrt5x + 5`
Factorize the following expressions:
a3 + 3a2b + 3ab2 + b3 - 8
If x + y = 4 and xy = 2, find the value of x2 + y2
If a2 + b2 + c2 = 20 and a + b + c = 0, find ab + bc + ca.
Evaluate: (4m - 2)(m2 + 5m - 6)
Evaluate: (4x2 - 4x + 1)(2x3 - 3x2 + 2)
Evaluate:
(i) (a + b)(a - b)
(ii) (a2 + b2)(a + b)(a - b); using the result of (i).
(iii) (a4 + b4)(a2 + b2)(a + b)(a - b); using the result of (ii).
Multiply: (-2x + 3y)(2x - 3y)
Write the coefficient of x2 and x in the following polynomials
`x^2 - 7/2 x + 8`