Advertisements
Advertisements
प्रश्न
What should be added to x3 + 3x2y + 3xy2 + y3 to get x3 + y3?
उत्तर
In order to find the solution subtract x3 + 3x2y + 3xy2 + y3 from get x3 + y3
Required expression is x3 + y3 – (x3 + 3x2y + 3xy2 + y3) = x3 + y3 – x3 – 3x2y – 3xy2 – y3
On combining the like terms,
= x3 – x3 + y3 – y3 – 3x2y – 3xy2
= –3x2y – 3xy2
So, if we add –3x2y – 3xy2 in x3 + 3x2y + 3xy2 + y3, we get x3 + y3.
APPEARS IN
संबंधित प्रश्न
Add the following:
l2 + m2, m2 + n2, n2 + l2, 2lm + 2mn + 2nl
Subtract 3xy + 5yz − 7zx from 5xy − 2yz − 2zx + 10xyz.
Subtract: 6xy from − 12xy
Subtract: a (b - 5) from b (5 - a)
Add the following algebraic expression:
\[\frac{3}{2}a - \frac{5}{4}b + \frac{2}{5}c, \frac{2}{3}a - \frac{7}{2}b + \frac{7}{2}c, \frac{5}{3}a + \frac{5}{2}b - \frac{5}{4}c\]
If \[x + \frac{1}{x} = 9,\] find the value of \[x^4 + \frac{1}{x^4} .\]
If \[x + \frac{1}{x} = 12,\] find the value of \[x - \frac{1}{x} .\]
Add:
5x2 – 3xy + 4y2 – 9, 7y2 + 5xy – 2x2 + 13
Add the following expressions:
p2 – 7pq – q2 and –3p2 – 2pq + 7q2
Add the following expressions:
uv – vw, vw – wu and wu – uv