Advertisements
Advertisements
Question
What should be added to x3 + 3x2y + 3xy2 + y3 to get x3 + y3?
Solution
In order to find the solution subtract x3 + 3x2y + 3xy2 + y3 from get x3 + y3
Required expression is x3 + y3 – (x3 + 3x2y + 3xy2 + y3) = x3 + y3 – x3 – 3x2y – 3xy2 – y3
On combining the like terms,
= x3 – x3 + y3 – y3 – 3x2y – 3xy2
= –3x2y – 3xy2
So, if we add –3x2y – 3xy2 in x3 + 3x2y + 3xy2 + y3, we get x3 + y3.
APPEARS IN
RELATED QUESTIONS
Add the following:
l2 + m2, m2 + n2, n2 + l2, 2lm + 2mn + 2nl
Subtract: 4a − 7ab + 3b + 12 from 12a − 9ab + 5b − 3
Simplify combining like terms: - z2 + 13z2 − 5z + 7z3 − 15z
Add: 3p2q2 - 4pq + 5, - 10p2q2, 15 + 9pq + 7p2q2
Subtract: 6xy from − 12xy
Subtract: -m2 + 5mn from 4m2 - 3mn + 8
If x is a natural number, then x + 1 is its predecessor
a(b + c) = a × ____ + a × _____.
Add:
7a2bc, –3abc2, 3a2bc, 2abc2
Add:
3a(2b + 5c), 3c(2a + 2b)