Advertisements
Advertisements
प्रश्न
Multiply the monomial by the binomial and find the value for x = −1, y = 0.25 and z = 0.05: 15y2(2 − 3x)
उत्तर
To find the product, we will use distributive law as follows:
\[15 y^2 \left( 2 - 3x \right)\]
\[ = 15 y^2 \times 2 - 15 y^2 \times 3x\]
\[ = 30 y^2 - 45x y^2\]
Substituting x =\[-\] 1 and y = 0.25 in the result, we get:
\[30 y^2 - 45x y^2 \]
\[ = 30 \left( 0 . 25 \right)^2 - 45\left( - 1 \right) \left( 0 . 25 \right)^2 \]
\[ = 30 \times 0 . 0625 - \left\{ 45 \times \left( - 1 \right) \times 0 . 0625 \right\}\]
\[ = 30 \times 0 . 0625 - \left\{ 45 \times \left( - 1 \right) \times 0 . 0625 \right\}\]
\[ = 1 . 875 - \left( - 2 . 8125 \right)\]
\[ = 1 . 875 + 2 . 8125\]
\[ = 4 . 6875\]
APPEARS IN
संबंधित प्रश्न
Multiply the binomials.
(2x + 5) and (4x − 3)
Multiply the binomials.
`(3/4 a^2 + 3b^2) and 4(a^2 - 2/3 b^2)`
Find the product.
(x + 7y) (7x − y)
Find the product.
(a2 + b) (a + b2)
Find the product.
(p2 − q2) (2p + q)
Multiply the monomial by the binomial and find the value for x = −1, y = 0.25 and z = 0.05:
xz(x2 + y2)
Find the product of the following binomial: \[\left( 2x + \frac{3}{y} \right)\left( 2x - \frac{3}{y} \right)\]
Find the product of the following binomial: \[\left( x^4 + \frac{2}{x^2} \right)\left( x^4 - \frac{2}{x^2} \right)\]
Using the formula for squaring a binomial, evaluate the following: (999)2
Using the formula for squaring a binomial, evaluate the following: (703)2