Advertisements
Advertisements
प्रश्न
Find the product of the following binomial: \[\left( 2x + \frac{3}{y} \right)\left( 2x - \frac{3}{y} \right)\]
उत्तर
We will use the identity \[\left( a + b \right)\left( a - b \right) = a^2 - b^2\] in the given expression to find the product.
\[\left( 2x + \frac{3}{y} \right)\left( 2x - \frac{3}{y} \right)\]
\[ = \left( 2x \right)^2 - \left( \frac{3}{y} \right)^2 \]
\[ = 4 x^2 - \frac{9}{y^2}\]
APPEARS IN
संबंधित प्रश्न
Multiply the binomials.
(2x + 5) and (4x − 3)
Multiply the binomials.
(y − 8) and (3y − 4)
Multiply the binomials.
(2.5l − 0.5m) and (2.5l + 0.5m)
Find the Product.
(5 − 2x) (3 + x)
Find the product.
(a2 + b) (a + b2)
Multiply the monomial by the binomial and find the value for x = −1, y = 0.25 and z = 0.05: 15y2(2 − 3x)
Find the product of the following binomial: (2x + y)(2x + y)
Using the formula for squaring a binomial, evaluate the following: (99)2
Using the formula for squaring a binomial, evaluate the following: (1001)2
Multiply the following:
b3, 3b2, 7ab5