Advertisements
Advertisements
प्रश्न
Find the product of the following binomial: \[\left( \frac{4x}{5} - \frac{3y}{4} \right)\left( \frac{4x}{5} + \frac{3y}{4} \right)\]
उत्तर
We will use the identity \[\left( a + b \right)\left( a - b \right) = a^2 - b^2\] in the given expression to find the product.
\[\left( \frac{4x}{5} - \frac{3y}{4} \right)\left( \frac{4x}{5} + \frac{3y}{4} \right)\]
\[ = \left( \frac{4x}{5} \right)^2 - \left( \frac{3y}{4} \right)^2 \]
\[ = \frac{16 x^2}{25} - \frac{9 y^2}{16}\]
APPEARS IN
संबंधित प्रश्न
Multiply the binomials.
(2x + 5) and (4x − 3)
Multiply the binomials.
(y − 8) and (3y − 4)
Multiply the binomials.
(2.5l − 0.5m) and (2.5l + 0.5m)
Multiply the binomials.
(a + 3b) and (x + 5)
Multiply the binomials.
(2pq + 3q2) and (3pq − 2q2)
Multiply the binomials.
`(3/4 a^2 + 3b^2) and 4(a^2 - 2/3 b^2)`
Multiply the monomial by the binomial and find the value for x = −1, y = 0.25 and z = 0.05: z2(x − y)
Find the product of the following binomial: (2x + y)(2x + y)
Find the product of the following binomial: (a2 + bc)(a2 − bc)
Using the formula for squaring a binomial, evaluate the following: (102)2