Advertisements
Advertisements
Question
Find the product of the following binomial: \[\left( \frac{4x}{5} - \frac{3y}{4} \right)\left( \frac{4x}{5} + \frac{3y}{4} \right)\]
Solution
We will use the identity \[\left( a + b \right)\left( a - b \right) = a^2 - b^2\] in the given expression to find the product.
\[\left( \frac{4x}{5} - \frac{3y}{4} \right)\left( \frac{4x}{5} + \frac{3y}{4} \right)\]
\[ = \left( \frac{4x}{5} \right)^2 - \left( \frac{3y}{4} \right)^2 \]
\[ = \frac{16 x^2}{25} - \frac{9 y^2}{16}\]
APPEARS IN
RELATED QUESTIONS
Multiply the binomials.
(2x + 5) and (4x − 3)
Multiply the binomials.
(y − 8) and (3y − 4)
Multiply the binomials.
(2pq + 3q2) and (3pq − 2q2)
Multiply the binomials.
`(3/4 a^2 + 3b^2) and 4(a^2 - 2/3 b^2)`
Find the product.
(a2 + b) (a + b2)
Multiply the monomial by the binomial and find the value for x = −1, y = 0.25 and z = 0.05: 15y2(2 − 3x)
Find the product of the following binomial: (2x + y)(2x + y)
Find the product of the following binomial: (a2 + bc)(a2 − bc)
Find the product of the following binomial: \[\left( 2x + \frac{3}{y} \right)\left( 2x - \frac{3}{y} \right)\]
Using the formula for squaring a binomial, evaluate the following: (999)2