Advertisements
Advertisements
Question
Using the formula for squaring a binomial, evaluate the following: (999)2
Solution
Here, we will use the identity \[\left( a - b \right)^2 = a^2 - 2ab + b^2\]
\[\left( 999 \right)^2 \]
\[ = \left( 1000 - 1 \right)^2 \]
\[ = \left( 1000 \right)^2 - 2 \times 1000 \times 1 + 1^2 \]
\[ = 1000000 - 2000 + 1\]
\[ = 998001\]
APPEARS IN
RELATED QUESTIONS
Multiply the binomials.
(2.5l − 0.5m) and (2.5l + 0.5m)
Multiply the binomials.
`(3/4 a^2 + 3b^2) and 4(a^2 - 2/3 b^2)`
Find the Product.
(5 − 2x) (3 + x)
Find the product.
(x + 7y) (7x − y)
Find the product.
(a2 + b) (a + b2)
Multiply the monomial by the binomial and find the value for x = −1, y = 0.25 and z = 0.05: 15y2(2 − 3x)
Multiply the monomial by the binomial and find the value for x = −1, y = 0.25 and z = 0.05:
xz(x2 + y2)
Find the product of the following binomial: (2x + y)(2x + y)
Find the product of the following binomial: \[\left( x^4 + \frac{2}{x^2} \right)\left( x^4 - \frac{2}{x^2} \right)\]
Using the formula for squaring a binomial, evaluate the following: (99)2