Advertisements
Advertisements
प्रश्न
Using the formula for squaring a binomial, evaluate the following: (999)2
उत्तर
Here, we will use the identity \[\left( a - b \right)^2 = a^2 - 2ab + b^2\]
\[\left( 999 \right)^2 \]
\[ = \left( 1000 - 1 \right)^2 \]
\[ = \left( 1000 \right)^2 - 2 \times 1000 \times 1 + 1^2 \]
\[ = 1000000 - 2000 + 1\]
\[ = 998001\]
APPEARS IN
संबंधित प्रश्न
Multiply the binomials.
(y − 8) and (3y − 4)
Multiply the binomials.
(a + 3b) and (x + 5)
Multiply the binomials.
(2pq + 3q2) and (3pq − 2q2)
Find the Product.
(5 − 2x) (3 + x)
Find the product.
(a2 + b) (a + b2)
Multiply the monomial by the binomial and find the value for x = −1, y = 0.25 and z = 0.05: z2(x − y)
Multiply the monomial by the binomial and find the value for x = −1, y = 0.25 and z = 0.05:
xz(x2 + y2)
Find the product of the following binomial: \[\left( \frac{4x}{5} - \frac{3y}{4} \right)\left( \frac{4x}{5} + \frac{3y}{4} \right)\]
Find the product of the following binomial: \[\left( 2x + \frac{3}{y} \right)\left( 2x - \frac{3}{y} \right)\]
Using the formula for squaring a binomial, evaluate the following: (99)2