Advertisements
Advertisements
प्रश्न
Multiply the monomial by the binomial and find the value for x = −1, y = 0.25 and z = 0.05:
xz(x2 + y2)
उत्तर
To find the product, we will use distributive law as follows:
\[xz\left( x^2 + y^2 \right)\]
\[ = xz \times x^2 + xz \times y^2 \]
\[ = x^3 z + x y^2 z\]
Substituting x = \[-\] 1, y = 0.25 and z = 0.05 in the result, we get:
\[x^3 z + x y^2 z\]
\[ = \left( - 1 \right)^3 \left( 0 . 05 \right) + \left( - 1 \right) \left( 0 . 25 \right)^2 \left( 0 . 05 \right)\]
\[ = \left( - 1 \right)\left( 0 . 05 \right) + \left( - 1 \right)\left( 0 . 0625 \right)\left( 0 . 05 \right)\]
\[ = - 0 . 05 - 0 . 003125\]
\[ = - 0 . 053125\]
APPEARS IN
संबंधित प्रश्न
Multiply the binomials.
(2.5l − 0.5m) and (2.5l + 0.5m)
Multiply the binomials.
`(3/4 a^2 + 3b^2) and 4(a^2 - 2/3 b^2)`
Find the Product.
(5 − 2x) (3 + x)
Find the product.
(x + 7y) (7x − y)
Find the product.
(p2 − q2) (2p + q)
Multiply the monomial by the binomial and find the value for x = −1, y = 0.25 and z = 0.05: z2(x − y)
Find the product of the following binomial: (2x + y)(2x + y)
Using the formula for squaring a binomial, evaluate the following: (1001)2
Using the formula for squaring a binomial, evaluate the following: (999)2
Multiply the following:
b3, 3b2, 7ab5