Advertisements
Advertisements
प्रश्न
Multiply the monomial by the binomial and find the value for x = −1, y = 0.25 and z = 0.05:
xz(x2 + y2)
उत्तर
To find the product, we will use distributive law as follows:
\[xz\left( x^2 + y^2 \right)\]
\[ = xz \times x^2 + xz \times y^2 \]
\[ = x^3 z + x y^2 z\]
Substituting x = \[-\] 1, y = 0.25 and z = 0.05 in the result, we get:
\[x^3 z + x y^2 z\]
\[ = \left( - 1 \right)^3 \left( 0 . 05 \right) + \left( - 1 \right) \left( 0 . 25 \right)^2 \left( 0 . 05 \right)\]
\[ = \left( - 1 \right)\left( 0 . 05 \right) + \left( - 1 \right)\left( 0 . 0625 \right)\left( 0 . 05 \right)\]
\[ = - 0 . 05 - 0 . 003125\]
\[ = - 0 . 053125\]
APPEARS IN
संबंधित प्रश्न
Multiply the binomials.
(2x + 5) and (4x − 3)
Find the product.
(x + 7y) (7x − y)
Find the product.
(a2 + b) (a + b2)
Find the product.
(p2 − q2) (2p + q)
Multiply the monomial by the binomial and find the value for x = −1, y = 0.25 and z = 0.05: z2(x − y)
Find the product of the following binomial: (a + 2b)(a − 2b)
Find the product of the following binomial: (a2 + bc)(a2 − bc)
Find the product of the following binomial: \[\left( \frac{4x}{5} - \frac{3y}{4} \right)\left( \frac{4x}{5} + \frac{3y}{4} \right)\]
Find the product of the following binomial: \[\left( x^4 + \frac{2}{x^2} \right)\left( x^4 - \frac{2}{x^2} \right)\]
Using the formula for squaring a binomial, evaluate the following: (999)2