Advertisements
Advertisements
प्रश्न
Using the formula for squaring a binomial, evaluate the following: (999)2
उत्तर
Here, we will use the identity \[\left( a - b \right)^2 = a^2 - 2ab + b^2\]
\[\left( 999 \right)^2 \]
\[ = \left( 1000 - 1 \right)^2 \]
\[ = \left( 1000 \right)^2 - 2 \times 1000 \times 1 + 1^2 \]
\[ = 1000000 - 2000 + 1\]
\[ = 998001\]
APPEARS IN
संबंधित प्रश्न
Multiply the binomials.
(2x + 5) and (4x − 3)
Multiply the binomials.
`(3/4 a^2 + 3b^2) and 4(a^2 - 2/3 b^2)`
Multiply the monomial by the binomial and find the value for x = −1, y = 0.25 and z = 0.05: 15y2(2 − 3x)
Find the product of the following binomial: (2x + y)(2x + y)
Find the product of the following binomial: \[\left( \frac{4x}{5} - \frac{3y}{4} \right)\left( \frac{4x}{5} + \frac{3y}{4} \right)\]
Find the product of the following binomial: \[\left( 2x + \frac{3}{y} \right)\left( 2x - \frac{3}{y} \right)\]
Find the product of the following binomial: (2a3 + b3)(2a3 − b3)
Using the formula for squaring a binomial, evaluate the following: (102)2
Using the formula for squaring a binomial, evaluate the following: (99)2
Using the formula for squaring a binomial, evaluate the following: (703)2