Advertisements
Advertisements
प्रश्न
Using the formula for squaring a binomial, evaluate the following: (99)2
उत्तर
Here, we will use the identity \[\left( a - b \right)^2 = a^2 - 2ab + b^2\]
\[\left( 99 \right)^2 \]
\[ = \left( 100 - 1 \right)^2 \]
\[ = \left( 100 \right)^2 - 2 \times 100 \times 1 + 1^2 \]
\[ = 10000 - 200 + 1\]
\[ = 9801\]
APPEARS IN
संबंधित प्रश्न
Multiply the binomials.
(2pq + 3q2) and (3pq − 2q2)
Multiply the binomials.
`(3/4 a^2 + 3b^2) and 4(a^2 - 2/3 b^2)`
Find the Product.
(5 − 2x) (3 + x)
Multiply the monomial by the binomial and find the value for x = −1, y = 0.25 and z = 0.05: 15y2(2 − 3x)
Multiply the monomial by the binomial and find the value for x = −1, y = 0.25 and z = 0.05: −3x(y2 + z2)
Multiply the monomial by the binomial and find the value for x = −1, y = 0.25 and z = 0.05: z2(x − y)
Multiply the monomial by the binomial and find the value for x = −1, y = 0.25 and z = 0.05:
xz(x2 + y2)
Find the product of the following binomial: (2x + y)(2x + y)
Find the product of the following binomial: \[\left( 2x + \frac{3}{y} \right)\left( 2x - \frac{3}{y} \right)\]
Multiply the following:
b3, 3b2, 7ab5