Advertisements
Advertisements
प्रश्न
Find the product of the following binomial: \[\left( 2x + \frac{3}{y} \right)\left( 2x - \frac{3}{y} \right)\]
उत्तर
We will use the identity \[\left( a + b \right)\left( a - b \right) = a^2 - b^2\] in the given expression to find the product.
\[\left( 2x + \frac{3}{y} \right)\left( 2x - \frac{3}{y} \right)\]
\[ = \left( 2x \right)^2 - \left( \frac{3}{y} \right)^2 \]
\[ = 4 x^2 - \frac{9}{y^2}\]
APPEARS IN
संबंधित प्रश्न
Multiply the binomials.
(2x + 5) and (4x − 3)
Multiply the binomials.
(2pq + 3q2) and (3pq − 2q2)
Find the Product.
(5 − 2x) (3 + x)
Find the product.
(x + 7y) (7x − y)
Find the product.
(a2 + b) (a + b2)
Find the product.
(p2 − q2) (2p + q)
Multiply the monomial by the binomial and find the value for x = −1, y = 0.25 and z = 0.05: −3x(y2 + z2)
Find the product of the following binomial: \[\left( \frac{4x}{5} - \frac{3y}{4} \right)\left( \frac{4x}{5} + \frac{3y}{4} \right)\]
Find the product of the following binomial: \[\left( x^3 + \frac{1}{x^3} \right)\left( x^3 - \frac{1}{x^3} \right)\]
Using the formula for squaring a binomial, evaluate the following: (99)2