Advertisements
Advertisements
प्रश्न
Find the product of the following binomial: (2a3 + b3)(2a3 − b3)
उत्तर
We will use the identity \[\left( a + b \right)\left( a - b \right) = a^2 - b^2\] in the given expression to find the product.
\[\left( 2 a^3 + b^3 \right)\left( 2 a^3 - b^3 \right)\]
\[ = \left( 2 a^3 \right)^2 - \left( b^3 \right)^2 \]
\[ = 4 a^6 - b^6\]
APPEARS IN
संबंधित प्रश्न
Multiply the binomials.
(2.5l − 0.5m) and (2.5l + 0.5m)
Multiply the binomials.
(2pq + 3q2) and (3pq − 2q2)
Multiply the binomials.
`(3/4 a^2 + 3b^2) and 4(a^2 - 2/3 b^2)`
Multiply the monomial by the binomial and find the value for x = −1, y = 0.25 and z = 0.05: 15y2(2 − 3x)
Multiply the monomial by the binomial and find the value for x = −1, y = 0.25 and z = 0.05: −3x(y2 + z2)
Multiply the monomial by the binomial and find the value for x = −1, y = 0.25 and z = 0.05: z2(x − y)
Multiply the monomial by the binomial and find the value for x = −1, y = 0.25 and z = 0.05:
xz(x2 + y2)
Find the product of the following binomial: (a2 + bc)(a2 − bc)
Find the product of the following binomial: \[\left( \frac{4x}{5} - \frac{3y}{4} \right)\left( \frac{4x}{5} + \frac{3y}{4} \right)\]
Multiply the following:
b3, 3b2, 7ab5