Advertisements
Advertisements
प्रश्न
Find the product of the following binomial: \[\left( x^4 + \frac{2}{x^2} \right)\left( x^4 - \frac{2}{x^2} \right)\]
उत्तर
We will use the identity \[\left( a + b \right)\left( a - b \right) = a^2 - b^2\] in the given expression to find the product.
\[\left( x^4 + \frac{2}{x^2} \right)\left( x^4 - \frac{2}{x^2} \right)\]
\[ = \left( x^4 \right)^2 - \left( \frac{2}{x^2} \right)^2 \]
\[ = x^8 - \frac{4}{x^4}\]
APPEARS IN
संबंधित प्रश्न
Multiply the binomials.
(2x + 5) and (4x − 3)
Multiply the binomials.
`(3/4 a^2 + 3b^2) and 4(a^2 - 2/3 b^2)`
Find the product.
(a2 + b) (a + b2)
Multiply the monomial by the binomial and find the value for x = −1, y = 0.25 and z = 0.05: −3x(y2 + z2)
Multiply the monomial by the binomial and find the value for x = −1, y = 0.25 and z = 0.05:
xz(x2 + y2)
Find the product of the following binomial: (a2 + bc)(a2 − bc)
Find the product of the following binomial: \[\left( \frac{4x}{5} - \frac{3y}{4} \right)\left( \frac{4x}{5} + \frac{3y}{4} \right)\]
Find the product of the following binomial: (2a3 + b3)(2a3 − b3)
Using the formula for squaring a binomial, evaluate the following: (999)2
Using the formula for squaring a binomial, evaluate the following: (703)2