Advertisements
Advertisements
Question
Simplify:
x2(x − y) y2(x + 2y)
Solution
To simplify, we will proceed as follows:
\[x^2 \left( x - y \right) y^2 \left( x + 2y \right)\]
\[ = \left[ x^2 \left( x - y \right) \right]\left[ y^2 \left( x + 2y \right) \right]\]
\[ = \left( x^3 - x^2 y \right)\left( x y^2 + 2 y^3 \right)\]
\[ = x^3 \left( x y^2 + 2 y^3 \right) - x^2 y\left( x y^2 + 2 y^3 \right)\]
\[ = x^4 y^2 + 2 x^3 y^3 - \left[ x^3 y^3 + 2 x^2 y^4 \right]\]
\[ = x^4 y^2 + 2 x^3 y^3 - x^3 y^3 - 2 x^2 y^4 \]
\[ = x^4 y^2 + x^3 y^3 - 2 x^2 y^4\]
Thus, the answer is \[x^4 y^2 + x^3 y^3 - 2 x^2 y^4\].
APPEARS IN
RELATED QUESTIONS
Find each of the following product:
−3a2 × 4b4
Find each of the following product:
(−5xy) × (−3x2yz)
Write down the product of −8x2y6 and −20xy. Verify the product for x = 2.5, y = 1.
Evaluate each of the following when x = 2, y = −1.
\[\left( \frac{3}{5} x^2 y \right) \times \left( - \frac{15}{4}x y^2 \right) \times \left( \frac{7}{9} x^2 y^2 \right)\]
Multiply:
(2x2y2 − 5xy2) by (x2 − y2)
Find the following product and verify the result for x = − 1, y = − 2:
(3x − 5y) (x + y)
Simplify:
x2(x + 2y) (x − 3y)
Simplify:
(3x + 2y)(4x + 3y) − (2x − y)(7x − 3y)
Show that: (a − b)(a + b) + (b − c)(b + c) + (c − a)( c + a) = 0
Solve the following equation.
6x − 1 = 3x + 8