Advertisements
Advertisements
Question
Simplify:
x2(x + 2y) (x − 3y)
Solution
To simplify, we will proceed as follows:
\[x^2 \left( x + 2y \right)\left( x - 3y \right)\]
\[ = \left[ x^2 \left( x + 2y \right) \right]\left( x - 3y \right)\]
\[ = \left( x^3 + 2 x^2 y \right)\left( x - 3y \right)\]
\[ = x^3 \left( x - 3y \right) + 2 x^2 y\left( x - 3y \right)\]
\[ = x^4 - 3 x^3 y + 2 x^3 y - 6 x^2 y^2 \]
\[ = x^4 - x^3 y - 6 x^2 y^2\]
Thus, the answer is \[x^4 - x^3 y - 6 x^2 y^2\].
APPEARS IN
RELATED QUESTIONS
Find each of the following product:
(−5xy) × (−3x2yz)
Find each of the following product:
\[\left( - \frac{2}{7} a^4 \right) \times \left( - \frac{3}{4} a^2 b \right) \times \left( - \frac{14}{5} b^2 \right)\]
Find each of the following product: \[\left( \frac{4}{3} u^2 vw \right) \times \left( - 5uv w^2 \right) \times \left( \frac{1}{3} v^2 wu \right)\]
Find each of the following product:
\[\left( 0 . 5x \right) \times \left( \frac{1}{3}x y^2 z^4 \right) \times \left( 24 x^2 yz \right)\]
Find the following product:
250.5xy \[\left( xz + \frac{y}{10} \right)\]
Multiply \[- \frac{3}{2} x^2 y^3 by (2x - y)\] and verify the answer for x = 1 and y = 2.
Multiply:
(a − 1) by (0.1a2 + 3)
Find the following product and verify the result for x = − 1, y = − 2:
(3x − 5y) (x + y)
Simplify:
(2x2 + 3x − 5)(3x2 − 5x + 4)
Show that: (4pq + 3q)2 − (4pq − 3q)2 = 48pq2