Advertisements
Advertisements
Question
Find the following product and verify the result for x = − 1, y = − 2: \[\left( \frac{1}{3}x - \frac{y^2}{5} \right)\left( \frac{1}{3}x + \frac{y^2}{5} \right)\]
Solution
To multiply, we will use distributive law as follows:
\[\left( \frac{1}{3}x - \frac{y^2}{5} \right)\left( \frac{1}{3}x + \frac{y^2}{5} \right)\]
\[ = \left[ \frac{1}{3}x\left( \frac{1}{3}x + \frac{y^2}{5} \right) \right] - \left[ \frac{y^2}{5}\left( \frac{1}{3}x + \frac{y^2}{5} \right) \right]\]
\[ = \left[ \frac{1}{9} x^2 + \frac{x y^2}{15} \right] - \left[ \frac{x y^2}{15} + \frac{y^4}{25} \right]\]
\[ = \frac{1}{9} x^2 + \frac{x y^2}{15} - \frac{x y^2}{15} - \frac{y^4}{25}\]
\[ = \frac{1}{9} x^2 - \frac{y^4}{25}\]
\[\therefore\] \[\left( \frac{1}{3}x - \frac{y^2}{5} \right)\left( \frac{1}{3}x + \frac{y^2}{5} \right) = \frac{1}{9} x^2 - \frac{y^4}{25}\]
Now, we will put x = \[-\] 1 and y = \[-\] 2 on both the sides to verify the result.
\[\text { LHS } =\left( \frac{1}{3}x - \frac{y^2}{5} \right)\left( \frac{1}{3}x + \frac{y^2}{5} \right)\]
\[ = \left[ \frac{1}{3}\left( - 1 \right) - \frac{\left( - 2 \right)^2}{5} \right]\left[ \frac{1}{3}\left( - 1 \right) + \frac{\left( - 2 \right)^2}{5} \right]\]
\[ = \left( - \frac{1}{3} - \frac{4}{5} \right)\left( - \frac{1}{3} + \frac{4}{5} \right)\]
\[ = \left( \frac{- 17}{15} \right)\left( \frac{7}{15} \right)\]
\[ = \frac{- 119}{225}\]
\[\text { RHS } = \frac{1}{9} x^2 - \frac{y^4}{25}\]
\[ = \frac{1}{9} \left( - 1 \right)^2 - \frac{\left( - 2 \right)^4}{25}\]
\[ = \frac{1}{9} \times 1 - \frac{16}{25}\]
\[ = \frac{1}{9} - \frac{16}{25}\]
\[ = - \frac{119}{225}\]
Because LHS is equal to RHS, the result is verified.
Thus, the answer is \[\frac{1}{9} x^2 - \frac{y^4}{25}\].
APPEARS IN
RELATED QUESTIONS
Find each of the following product: \[\left( \frac{4}{3} u^2 vw \right) \times \left( - 5uv w^2 \right) \times \left( \frac{1}{3} v^2 wu \right)\]
Evaluate (3.2x6y3) × (2.1x2y2) when x = 1 and y = 0.5.
Find the following product:
−11a(3a + 2b)
Find the following product: \[\frac{6x}{5}( x^3 + y^3 )\]
Find the product −3y(xy + y2) and find its value for x = 4 and y = 5.
Simplify: x2(x2 + 1) − x3(x + 1) − x(x3 − x)
Multiply: \[\left( - \frac{a}{7} + \frac{a^2}{9} \right)by\left( \frac{b}{2} - \frac{b^2}{3} \right)\].
Simplify:
(x2 − 2y2) (x + 4y) x2y2
Simplify : (2x − 1)(2x + 1)(4x2 + 1)(16x4 + 1)
Simplify : (4m − 8n)2 + (7m + 8n)2