Advertisements
Advertisements
प्रश्न
Express each of the following product as a monomials and verify the result for x = 1, y = 2: \[\left( - \frac{4}{7} a^2 b \right) \times \left( - \frac{2}{3} b^2 c \right) \times \left( - \frac{7}{6} c^2 a \right)\]
उत्तर
To multiply algebraic expressions, we use commutative and associative laws along with the laws of indices, i.e., \[a^m \times a^n = a^{m + n}\].
We have:
\[\left( - \frac{4}{7} a^2 b \right) \times \left( - \frac{2}{3} b^2 c \right) \times \left( - \frac{7}{6} c^2 a \right)\]
\[ = \left\{ \left( - \frac{4}{7} \right) \times \left( - \frac{2}{3} \right) \times \left( - \frac{7}{6} \right) \right\} \times \left( a^2 \times a \right) \times \left( b \times b^2 \right) \times \left( c \times c^2 \right)\]
\[ = \left\{ \left( - \frac{4}{7} \right) \times \left( - \frac{2}{3} \right) \times \left( - \frac{7}{6} \right) \right\} \times \left( a^{2 + 1} \right) \times \left( b^{1 + 2} \right) \times \left( c^{1 + 2} \right)\]
\[ = - \frac{4}{9} a^3 b^3 c^3\]
\[\because\] The expression doesn't consist of the variables x and y.
\[\therefore\] The result cannot be verified for x = 1 and y = 2.
Thus, the answer is \[- \frac{4}{9} a^3 b^3 c^3\].
APPEARS IN
संबंधित प्रश्न
Obtain the volume of a rectangular box with the following length, breadth, and height, respectively.
xy, 2x2y, 2xy2
Obtain the product of m, − mn, mnp.
Multiply: −5cd2 by − 5cd2
Multiply: 4a and 6a + 7
Multiply: 2a2 − 5a − 4 and −3a
Multiply: x + 4 by x − 5
Length | breadth | height | |
(i) | 2ax | 3by | 5cz |
(ii) | m2n | n2p | p2m |
(iii) | 2q | 4q2 | 8q3 |
Solve: ( -3x2 ) × ( -4xy)
A total of 90 currency notes, consisting only of ₹ 5 and ₹ 10 denominations, amount to ₹ 500. Find the number of notes in each denomination.
abc + bca + cab is a monomial.