Advertisements
Advertisements
प्रश्न
Express each of the following product as a monomials and verify the result for x = 1, y = 2: \[\left( \frac{1}{8} x^2 y^4 \right) \times \left( \frac{1}{4} x^4 y^2 \right) \times \left( xy \right) \times 5\]
उत्तर
To multiply algebraic expressions, we use commutative and associative laws along with the laws of indices, i.e., \[a^m \times a^n = a^{m + n}\].
We have:
\[\left( \frac{1}{8} x^2 y^4 \right) \times \left( \frac{1}{4} x^4 y^2 \right) \times \left( xy \right) \times 5\]
\[ = \left( \frac{1}{8} \times \frac{1}{4} \times 5 \right) \times \left( x^2 \times x^4 \times x \right) \times \left( y^4 \times y^2 \times y \right)\]
\[ = \left( \frac{1}{8} \times \frac{1}{4} \times 5 \right) \times \left( x^{2 + 4 + 1} \right) \times \left( y^{4 + 2 + 1} \right)\]
\[ = \frac{5}{32} x^7 y^7\]
To verify the result, we substitute x = 1 and y = 2 in LHS; we get:
\[\text { LHS } = \left( \frac{1}{8} x^2 y^4 \right) \times \left( \frac{1}{4} x^4 y^2 \right) \times \left( xy \right) \times 5\]
\[ = \left\{ \frac{1}{8} \times \left( 1 \right)^2 \times \left( 2 \right)^4 \right\} \times \left\{ \frac{1}{4} \times \left( 1 \right)^4 \times \left( 2 \right)^2 \right\} \times \left( 1 \times 2 \right) \times 5\]
\[ = \left( \frac{1}{8} \times 1 \times 16 \right) \times \left( \frac{1}{4} \times 1 \times 4 \right) \times \left( 1 \times 2 \right) \times 5\]
\[ = 2 \times 1 \times 2 \times 5\]
\[ = 20\]
Substituting x = 1 and y = 2 in RHS, we get:
\[\text { RHS } = \frac{5}{32} x^7 y^7 \]
\[ = \frac{5}{32} \left( 1 \right)^7 \left( 2 \right)^7 \]
\[ = \frac{5}{32} \times 1 \times {128}^4 \]
\[ = 20\]
Because LHS is equal to RHS, the result is correct.
Thus, the answer is \[\frac{5}{32} x^7 y^7\].
APPEARS IN
संबंधित प्रश्न
Find the product of the following pair of monomial.
4, 7p
Find the product of the following pair of monomial.
− 4p, 7p
Find the areas of rectangles with the following pairs of monomials as their lengths and breadths, respectively.
(p, q); (10m, 5n); (20x2, 5y2); (4x, 3x2); (3mn, 4np)
Obtain the volume of a rectangular box with the following length, breadth, and height, respectively.
a, 2b, 3c
Express each of the following product as a monomials and verify the result for x = 1, y = 2:
Multiply: x + 4 by x − 5
Multiply: `2"x"+1/2"y"` and `2"x"-1/2"y"`
Three consecutive integers, when taken in increasing order and multiplied by 2, 3 and 4 respectively, total up to 74. Find the three numbers.
Multiply the following:
–3x2y, (5y – xy)
Multiply the following:
x2y2z2, (xy – yz + zx)