Advertisements
Advertisements
प्रश्न
Express each of the following product as a monomials and verify the result for x = 1, y = 2:
(−xy3) × (yx3) × (xy)
उत्तर
To multiply algebraic expressions, we use commutative and associative laws along with the laws of indices, i.e., \[a^m \times a^n = a^{m + n}\].
We have:
\[\left( - x y^3 \right) \times \left( y x^3 \right) \times \left( xy \right)\]
\[ = \left( - 1 \right) \times \left( x \times x^3 \times x \right) \times \left( y^3 \times y \times y \right)\]
\[ = \left( - 1 \right) \times \left( x^{1 + 3 + 1} \right) \times \left( y^{3 + 1 + 1} \right)\]
\[ = - x^5 y^5\]
To verify the result, we substitute x = 1 and y = 2 in LHS; we get:
\[\text { LHS }= \left( - x y^3 \right) \times \left( y x^3 \right) \times \left( xy \right)\]
\[ = \left\{ \left( - 1 \right) \times 1 \times 2^3 \right\} \times \left( 2 \times 1^3 \right) \times \left( 1 \times 2 \right)\]
\[ = \left\{ \left( - 1 \right) \times 1 \times 8 \right\} \times \left( 2 \times 1 \right) \times 2\]
\[ = \left( - 8 \right) \times 2 \times 2\]
\[ = - 32\]
Substituting x = 1 and y = 2 in RHS, we get:
\[\text { RHS } = - x^5 y^5 \]
\[ = \left( - 1 \right) \left( 1 \right)^5 \left( 2 \right)^5 \]
\[ = \left( - 1 \right) \times 1 \times 32\]
\[ = - 32\]
Because LHS is equal to RHS, the result is correct.
Thus, the answer is \[- x^5 y^5\].
APPEARS IN
संबंधित प्रश्न
Obtain the volume of a rectangular box with the following length, breadth, and height, respectively.
5a, 3a2, 7a4
Obtain the product of a, 2b, 3c, 6abc.
Obtain the product of m, − mn, mnp.
Express each of the following product as a monomials and verify the result for x = 1, y = 2: \[\left( - \frac{4}{7} a^2 b \right) \times \left( - \frac{2}{3} b^2 c \right) \times \left( - \frac{7}{6} c^2 a \right)\]
Multiply: `2/3"ab"` by `-1/4 "a"^2"b"`
Multiply: −8x and 4 − 2x − x2
Multiply: abx, −3a2x and 7b2x3
Solve: (-12x) × 3y2
Multiply the following:
abc, (bc + ca)
Multiply the following:
(p + 6), (q – 7)