Advertisements
Advertisements
प्रश्न
Multiply (4x2 + 9) and (3x – 2)
उत्तर
(4x2 + 9)(3x – 2) = 4x2(3x – 2) + 9(3x – 2)
= (4x2)(3x) – (4x2)(2) + 9(3x) – 9(2)
= (4 × 3 × x × x2) – (4 × 2 × x2) + (9 × 3 × x) – 18
= 12x3 – 8x2 + 27x – 18(4x3 + 9)(3x – 2)
= 12x3 – 8x2 + 27x – 18
APPEARS IN
संबंधित प्रश्न
Find the product of the following pair of monomial.
4p3, − 3p
Complete the table of products.
First monomial→ |
2x |
–5y |
3x2 |
–4xy |
7x2y |
–9x2y2 |
Second monomial ↓ |
||||||
2x | 4x2 | ... | ... | ... | ... | ... |
–5y | ... | ... | –15x2y | ... | ... | ... |
3x2 | ... | ... | ... | ... | ... | ... |
– 4xy | ... | ... | ... | ... | ... | ... |
7x2y | ... | ... | ... | ... | ... | ... |
–9x2y2 | ... | ... | ... | ... | ... | ... |
Obtain the volume of a rectangular box with the following length, breadth, and height, respectively.
5a, 3a2, 7a4
Obtain the volume of a rectangular box with the following length, breadth, and height, respectively.
2p, 4q, 8r
Obtain the volume of a rectangular box with the following length, breadth, and height, respectively.
xy, 2x2y, 2xy2
Express each of the following product as a monomials and verify the result for x = 1, y = 2:
(−xy3) × (yx3) × (xy)
Express each of the following product as a monomials and verify the result for x = 1, y = 2: \[\left( \frac{1}{8} x^2 y^4 \right) \times \left( \frac{1}{4} x^4 y^2 \right) \times \left( xy \right) \times 5\]
Multiply: 5a − 1 by 7a − 3
The length of a rectangle is `1/3` of its breadth. If its perimeter is 64 m, then find the length and breadth of the rectangle.
Area of a rectangle with length 4ab and breadth 6b2 is ______.