Advertisements
Advertisements
प्रश्न
Find each of the following product:
5x2 × 4x3
उत्तर
To multiply algebraic expressions, we use commutative and associative laws along with the laws of indices. However, use of these laws are subject to their applicability in the given expressions.
In the present problem, to perform the multiplication, we can proceed as follows:
\[5 x^2 \times 4 x^3 \]
\[ = \left( 5 \times 4 \right) \times \left( x^2 \times x^3 \right)\]
\[= 20 x^5\]
(\[\because\] \[a^m \times a^n = a^{m + n}\])
Thus, the answer is \[20 x^5\].
APPEARS IN
संबंधित प्रश्न
Find each of the following product:
(−5xy) × (−3x2yz)
Evaluate each of the following when x = 2, y = −1.
\[(2xy) \times \left( \frac{x^2 y}{4} \right) \times \left( x^2 \right) \times \left( y^2 \right)\]
Simplify: 3a2 + 2(a + 2) − 3a(2a + 1)
Simplify: a(b − c) + b(c − a) + c(a − b)
Simplify: a2b(a − b2) + ab2(4ab − 2a2) − a3b(1 − 2b)
Multiply: \[\left( \frac{3}{5}x + \frac{1}{2}y \right) by \left( \frac{5}{6}x + 4y \right)\]
Multiply: \[\left( - \frac{a}{7} + \frac{a^2}{9} \right)by\left( \frac{b}{2} - \frac{b^2}{3} \right)\].
Simplify:
a2b2(a + 2b)(3a + b)
Simplify:
(x3 − 2x2 + 5x − 7)(2x − 3)
Simplify:
(3x − 2)(2x − 3) + (5x − 3)(x + 1)