Advertisements
Advertisements
प्रश्न
Simplify the following: \[- \frac{1}{2} a^2 b^2 c + \frac{1}{3}a b^2 c - \frac{1}{4}ab c^2 - \frac{1}{5}c b^2 a^2 + \frac{1}{6}c b^2 a - \frac{1}{7} c^2 ab + \frac{1}{8}c a^2 b .\]
उत्तर
\[- \frac{1}{2} a^2 b^2 c + \frac{1}{3}a b^2 c - \frac{1}{4}ab c^2 - \frac{1}{5}c b^2 a^2 + \frac{1}{6}c b^2 a - \frac{1}{7} c^2 ab + \frac{1}{8}c a^2 b\]
\[= - \frac{1}{2} a^2 b^2 c - \frac{1}{5}c b^2 a^2 + \frac{1}{3}a b^2 c + \frac{1}{6}c b^2 a - \frac{1}{4}ab c^2 - \frac{1}{7} c^2 ab + \frac{1}{8}c a^2 b\] (Collecting like terms)
= \[\left( \frac{- 5 - 2}{10} \right) a^2 b^2 c + \left( \frac{2 + 1}{6} \right)c b^2 a^2 + \left( \frac{- 7 - 4}{28} \right) c^2 ab + \frac{1}{8}c a^2 b\]
\[= - \frac{7}{10} a^2 b^2 c + \frac{1}{2}a b^2 c - \frac{11}{28}ab c^2 + \frac{1}{8} a^2 bc\] (Combining like terms)
APPEARS IN
संबंधित प्रश्न
State whether a given pair of term is of like or unlike term.
12xz, 12x2z2
Identify like term in the following:
−xy2, − 4yx2, 8x2, 2xy2, 7y, −11x2, −100x, −11yx, 20x2y, −6x2, y, 2xy, 3x
Take away:
\[\frac{7}{4} x^3 + \frac{3}{5} x^2 + \frac{1}{2}x + \frac{9}{2}\text { from } \frac{7}{2} - \frac{x}{3} - \frac{x^2}{5}\]
In the polynomial, given below, separate the like terms :
y2z3, xy2z3, −5x2yz, −4y2z3, −8xz3y2, 3x2yz and 2z3y2
2pq and – 7qp are like terms
Identify the like terms among the following:
7x, 5y, −8x, 12y, 6z, z, −12x, −9y, 11z
Which of the following is a binomial?
Which of the following is a pair of like terms?
3a2b and –7ba2 are ______ terms.
–5a2b and –5b2a are ______ terms.