Advertisements
Advertisements
Question
Simplify the following: \[- \frac{1}{2} a^2 b^2 c + \frac{1}{3}a b^2 c - \frac{1}{4}ab c^2 - \frac{1}{5}c b^2 a^2 + \frac{1}{6}c b^2 a - \frac{1}{7} c^2 ab + \frac{1}{8}c a^2 b .\]
Solution
\[- \frac{1}{2} a^2 b^2 c + \frac{1}{3}a b^2 c - \frac{1}{4}ab c^2 - \frac{1}{5}c b^2 a^2 + \frac{1}{6}c b^2 a - \frac{1}{7} c^2 ab + \frac{1}{8}c a^2 b\]
\[= - \frac{1}{2} a^2 b^2 c - \frac{1}{5}c b^2 a^2 + \frac{1}{3}a b^2 c + \frac{1}{6}c b^2 a - \frac{1}{4}ab c^2 - \frac{1}{7} c^2 ab + \frac{1}{8}c a^2 b\] (Collecting like terms)
= \[\left( \frac{- 5 - 2}{10} \right) a^2 b^2 c + \left( \frac{2 + 1}{6} \right)c b^2 a^2 + \left( \frac{- 7 - 4}{28} \right) c^2 ab + \frac{1}{8}c a^2 b\]
\[= - \frac{7}{10} a^2 b^2 c + \frac{1}{2}a b^2 c - \frac{11}{28}ab c^2 + \frac{1}{8} a^2 bc\] (Combining like terms)
APPEARS IN
RELATED QUESTIONS
State whether a given pair of term is of like or unlike term.
4m2p, 4mp2
Simplify the following:
[5 − 3x + 2y − (2x − y)] − (3x − 7y + 9)
In the polynomial, given below, separate the like terms :
y2z3, xy2z3, −5x2yz, −4y2z3, −8xz3y2, 3x2yz and 2z3y2
If the area of a square is 36x4y2 then, its side is ____________
Like term as 4m3n2 is ______.
Sum of a – b + ab, b + c – bc and c – a – ac is ______.
Sum or difference of two like terms is ______.
3a2b and –7ba2 are ______ terms.
–5a2b and –5b2a are ______ terms.
In like terms, variables and their powers are the same.