Advertisements
Advertisements
प्रश्न
Simplify the following: \[- \frac{1}{2} a^2 b^2 c + \frac{1}{3}a b^2 c - \frac{1}{4}ab c^2 - \frac{1}{5}c b^2 a^2 + \frac{1}{6}c b^2 a - \frac{1}{7} c^2 ab + \frac{1}{8}c a^2 b .\]
उत्तर
\[- \frac{1}{2} a^2 b^2 c + \frac{1}{3}a b^2 c - \frac{1}{4}ab c^2 - \frac{1}{5}c b^2 a^2 + \frac{1}{6}c b^2 a - \frac{1}{7} c^2 ab + \frac{1}{8}c a^2 b\]
\[= - \frac{1}{2} a^2 b^2 c - \frac{1}{5}c b^2 a^2 + \frac{1}{3}a b^2 c + \frac{1}{6}c b^2 a - \frac{1}{4}ab c^2 - \frac{1}{7} c^2 ab + \frac{1}{8}c a^2 b\] (Collecting like terms)
= \[\left( \frac{- 5 - 2}{10} \right) a^2 b^2 c + \left( \frac{2 + 1}{6} \right)c b^2 a^2 + \left( \frac{- 7 - 4}{28} \right) c^2 ab + \frac{1}{8}c a^2 b\]
\[= - \frac{7}{10} a^2 b^2 c + \frac{1}{2}a b^2 c - \frac{11}{28}ab c^2 + \frac{1}{8} a^2 bc\] (Combining like terms)
APPEARS IN
संबंधित प्रश्न
Identify like term in the following:
10pq, 7p, 8q, −p2q2, −7qp, −100q, −23, 12q2p2, −5p2, 41, 2405p, 78qp, 13p2q, qp2, 701p2
Take away:
\[\frac{6}{5} x^2 - \frac{4}{5} x^3 + \frac{5}{6} + \frac{3}{2}x \text { from }\frac{x^3}{3} - \frac{5}{2} x^2 + \frac{3}{5}x + \frac{1}{4}\]
Take away:
\[\frac{5 a^2}{2} + \frac{3 a^3}{2} + \frac{a}{3} - \frac{6}{5} \text { from } \frac{1}{3} a^3 - \frac{3}{4} a^2 - \frac{5}{2}\]
Simplify the following:
\[\left( \frac{1}{3} y^2 - \frac{4}{7}y + 11 \right) - \left( \frac{1}{7}y - 3 + 2 y^2 \right) - \left( \frac{2}{7}y - \frac{2}{3} y^2 + 2 \right)\]
The missing terms in the product −3m3n × 9(__) = _________ m4n3
In an expression, we can add or subtract only ________
The product of two negative terms is a negative term.
The product of one negative and one positive term is a negative term.
–5a2b and –5b2a are ______ terms.
5a and 5b are unlike terms