Advertisements
Advertisements
प्रश्न
Take away:
\[\frac{5 a^2}{2} + \frac{3 a^3}{2} + \frac{a}{3} - \frac{6}{5} \text { from } \frac{1}{3} a^3 - \frac{3}{4} a^2 - \frac{5}{2}\]
उत्तर
The difference is given by:
\[\left( \frac{1}{3} a^3 - \frac{3 a^2}{4} - \frac{5}{2} \right) - \left( \frac{5 a^2}{2} + \frac{3 a^3}{2} + \frac{a}{3} - \frac{6}{5} \right)\]
\[ = \frac{1}{3} a^3 - \frac{3 a^2}{4} - \frac{5}{2} - \frac{5 a^2}{2} - \frac{3 a^3}{2} - \frac{a}{3} + \frac{6}{5}\]
\[= \frac{1}{3} a^3 - \frac{3 a^3}{2} - \frac{3 a^2}{4} - \frac{5 a^2}{2} - \frac{a}{3} - \frac{5}{2} + \frac{6}{5}\] (Collecting like terms)
= \[\left( \frac{2 - 9}{6} \right) a^3 + \left( \frac{- 3 - 10}{4} \right) a^2 - \frac{a}{3} + \left( \frac{- 25 + 12}{10} \right)\]
\[= - \frac{7}{6} a^3 - \frac{13}{4} a^2 - \frac{a}{3} - \frac{13}{10}\] (Combining like terms)
APPEARS IN
संबंधित प्रश्न
State whether a given pair of term is of like or unlike term.
−29x, −29y
Take away:
\[\frac{6}{5} x^2 - \frac{4}{5} x^3 + \frac{5}{6} + \frac{3}{2}x \text { from }\frac{x^3}{3} - \frac{5}{2} x^2 + \frac{3}{5}x + \frac{1}{4}\]
Take away:
\[\frac{7}{4} x^3 + \frac{3}{5} x^2 + \frac{1}{2}x + \frac{9}{2}\text { from } \frac{7}{2} - \frac{x}{3} - \frac{x^2}{5}\]
Simplify the following: \[- \frac{1}{2} a^2 b^2 c + \frac{1}{3}a b^2 c - \frac{1}{4}ab c^2 - \frac{1}{5}c b^2 a^2 + \frac{1}{6}c b^2 a - \frac{1}{7} c^2 ab + \frac{1}{8}c a^2 b .\]
In the polynomial, given below, separate the like terms :
y2z3, xy2z3, −5x2yz, −4y2z3, −8xz3y2, 3x2yz and 2z3y2
7a2b and −7ab2 are like terms
Which of the following is a binomial?
Sum of a – b + ab, b + c – bc and c – a – ac is ______.
Which of the following are like terms?
Like terms in the expression n(n + 1) + 6(n – 1) are ______ and ______.