Advertisements
Advertisements
प्रश्न
Take away:
\[\frac{6}{5} x^2 - \frac{4}{5} x^3 + \frac{5}{6} + \frac{3}{2}x \text { from }\frac{x^3}{3} - \frac{5}{2} x^2 + \frac{3}{5}x + \frac{1}{4}\]
उत्तर
The difference is given by:
\[\left( \frac{x^3}{3} - \frac{5}{2} x^2 + \frac{3}{5}x + \frac{1}{4} \right) - \left( \frac{6}{5} x^2 - \frac{4}{5} x^3 + \frac{5}{6} + \frac{3}{2}x \right)\]
\[ = \frac{x^3}{3} - \frac{5}{2} x^2 + \frac{3}{5}x + \frac{1}{4} - \frac{6}{5} x^2 + \frac{4}{5} x^3 - \frac{5}{6} - \frac{3}{2}x\]
\[= \frac{x^3}{3} + \frac{4}{5} x^3 - \frac{5}{2} x^2 - \frac{6}{5} x^2 + \frac{3}{5}x - \frac{3}{2}x + \frac{1}{4} - \frac{5}{6}\] (Collecting like terms)
\[\left( \frac{5 + 12}{15} \right) x^3 + \left( \frac{- 25 - 12}{10} \right) x^2 + \left( \frac{6 - 15}{10} \right)x + \left( \frac{6 - 20}{24} \right)\]
\[= \frac{17}{15} x^3 - \frac{37}{10} x^2 - \frac{9}{10}x - \frac{7}{12}\] (Combining like terms)
APPEARS IN
संबंधित प्रश्न
Identify like term in the following:
−xy2, − 4yx2, 8x2, 2xy2, 7y, −11x2, −100x, −11yx, 20x2y, −6x2, y, 2xy, 3x
Take away:
\[\frac{5 a^2}{2} + \frac{3 a^3}{2} + \frac{a}{3} - \frac{6}{5} \text { from } \frac{1}{3} a^3 - \frac{3}{4} a^2 - \frac{5}{2}\]
Take away:
\[\frac{7}{4} x^3 + \frac{3}{5} x^2 + \frac{1}{2}x + \frac{9}{2}\text { from } \frac{7}{2} - \frac{x}{3} - \frac{x^2}{5}\]
Take away:
\[\frac{y^3}{3} + \frac{7}{3} y^2 + \frac{1}{2}y + \frac{1}{2} \text { from } \frac{1}{3} - \frac{5}{3} y^2\]
Simplify the following:
\[\left( \frac{1}{3} y^2 - \frac{4}{7}y + 11 \right) - \left( \frac{1}{7}y - 3 + 2 y^2 \right) - \left( \frac{2}{7}y - \frac{2}{3} y^2 + 2 \right)\]
Sum of a – b + ab, b + c – bc and c – a – ac is ______.
The product of one negative and one positive term is a negative term.
123x2y – 138x2y is a like term of ______.
3a2b and –7ba2 are ______ terms.
In like terms, variables and their powers are the same.