Advertisements
Advertisements
Question
Take away:
\[\frac{6}{5} x^2 - \frac{4}{5} x^3 + \frac{5}{6} + \frac{3}{2}x \text { from }\frac{x^3}{3} - \frac{5}{2} x^2 + \frac{3}{5}x + \frac{1}{4}\]
Solution
The difference is given by:
\[\left( \frac{x^3}{3} - \frac{5}{2} x^2 + \frac{3}{5}x + \frac{1}{4} \right) - \left( \frac{6}{5} x^2 - \frac{4}{5} x^3 + \frac{5}{6} + \frac{3}{2}x \right)\]
\[ = \frac{x^3}{3} - \frac{5}{2} x^2 + \frac{3}{5}x + \frac{1}{4} - \frac{6}{5} x^2 + \frac{4}{5} x^3 - \frac{5}{6} - \frac{3}{2}x\]
\[= \frac{x^3}{3} + \frac{4}{5} x^3 - \frac{5}{2} x^2 - \frac{6}{5} x^2 + \frac{3}{5}x - \frac{3}{2}x + \frac{1}{4} - \frac{5}{6}\] (Collecting like terms)
\[\left( \frac{5 + 12}{15} \right) x^3 + \left( \frac{- 25 - 12}{10} \right) x^2 + \left( \frac{6 - 15}{10} \right)x + \left( \frac{6 - 20}{24} \right)\]
\[= \frac{17}{15} x^3 - \frac{37}{10} x^2 - \frac{9}{10}x - \frac{7}{12}\] (Combining like terms)
APPEARS IN
RELATED QUESTIONS
State whether a given pair of term is of like or unlike term.
12xz, 12x2z2
Identify like term in the following:
10pq, 7p, 8q, −p2q2, −7qp, −100q, −23, 12q2p2, −5p2, 41, 2405p, 78qp, 13p2q, qp2, 701p2
Simplify the following:
\[\frac{11}{2} x^2 y - \frac{9}{4}x y^2 + \frac{1}{4}xy - \frac{1}{14} y^2 x + \frac{1}{15}y x^2 + \frac{1}{2}xy\]
Find the product of the terms
3x2y , −3xy3, x2y2
2pq and – 7qp are like terms
Sum of a – b + ab, b + c – bc and c – a – ac is ______.
The product of two terms with like signs is a ______ term.
Which of the following is a pair of like terms?
123x2y – 138x2y is a like term of ______.
–5a2b and –5b2a are ______ terms.