Advertisements
Advertisements
Question
Find the product of the terms
3x2y , −3xy3, x2y2
Solution
(3x2y) × (−3xy3) × (x2y2) = (+) × (−) × (+) × (3 × 3 × 1)(x2 × x × x2) × (y × y3 × y2)
= −9x5 y6
APPEARS IN
RELATED QUESTIONS
State whether a given pair of term is of like or unlike term.
12xz, 12x2z2
Take away:
\[\frac{6}{5} x^2 - \frac{4}{5} x^3 + \frac{5}{6} + \frac{3}{2}x \text { from }\frac{x^3}{3} - \frac{5}{2} x^2 + \frac{3}{5}x + \frac{1}{4}\]
Simplify the following:
x2 − 3x + 5 − \[\frac{1}{2}\] (3x2 − 5x + 7)
Simplify the following:
\[\frac{11}{2} x^2 y - \frac{9}{4}x y^2 + \frac{1}{4}xy - \frac{1}{14} y^2 x + \frac{1}{15}y x^2 + \frac{1}{2}xy\]
Simplify the following:
\[\left( \frac{1}{3} y^2 - \frac{4}{7}y + 11 \right) - \left( \frac{1}{7}y - 3 + 2 y^2 \right) - \left( \frac{2}{7}y - \frac{2}{3} y^2 + 2 \right)\]
Simplify the following: \[- \frac{1}{2} a^2 b^2 c + \frac{1}{3}a b^2 c - \frac{1}{4}ab c^2 - \frac{1}{5}c b^2 a^2 + \frac{1}{6}c b^2 a - \frac{1}{7} c^2 ab + \frac{1}{8}c a^2 b .\]
In the expression 25m + 14n, the type of the terms are ________ terms
Sum or difference of two like terms is ______.
In like terms, variables and their powers are the same.
5a and 5b are unlike terms