Advertisements
Advertisements
Question
Take away:
\[\frac{5 a^2}{2} + \frac{3 a^3}{2} + \frac{a}{3} - \frac{6}{5} \text { from } \frac{1}{3} a^3 - \frac{3}{4} a^2 - \frac{5}{2}\]
Solution
The difference is given by:
\[\left( \frac{1}{3} a^3 - \frac{3 a^2}{4} - \frac{5}{2} \right) - \left( \frac{5 a^2}{2} + \frac{3 a^3}{2} + \frac{a}{3} - \frac{6}{5} \right)\]
\[ = \frac{1}{3} a^3 - \frac{3 a^2}{4} - \frac{5}{2} - \frac{5 a^2}{2} - \frac{3 a^3}{2} - \frac{a}{3} + \frac{6}{5}\]
\[= \frac{1}{3} a^3 - \frac{3 a^3}{2} - \frac{3 a^2}{4} - \frac{5 a^2}{2} - \frac{a}{3} - \frac{5}{2} + \frac{6}{5}\] (Collecting like terms)
= \[\left( \frac{2 - 9}{6} \right) a^3 + \left( \frac{- 3 - 10}{4} \right) a^2 - \frac{a}{3} + \left( \frac{- 25 + 12}{10} \right)\]
\[= - \frac{7}{6} a^3 - \frac{13}{4} a^2 - \frac{a}{3} - \frac{13}{10}\] (Combining like terms)
APPEARS IN
RELATED QUESTIONS
State whether a given pair of term is of like or unlike term.
4m2p, 4mp2
State whether a given pair of term is of like or unlike term.
12xz, 12x2z2
Identify like term in the following:
10pq, 7p, 8q, −p2q2, −7qp, −100q, −23, 12q2p2, −5p2, 41, 2405p, 78qp, 13p2q, qp2, 701p2
Take away:
\[\frac{7}{4} x^3 + \frac{3}{5} x^2 + \frac{1}{2}x + \frac{9}{2}\text { from } \frac{7}{2} - \frac{x}{3} - \frac{x^2}{5}\]
Take away:
\[\frac{2}{3}ac - \frac{5}{7}ab + \frac{2}{3}bc\text { from } \frac{3}{2}ab - \frac{7}{4}ac - \frac{5}{6}bc\]
Simplify the following:
[5 − 3x + 2y − (2x − y)] − (3x − 7y + 9)
Simplify the following:
\[\left( \frac{1}{3} y^2 - \frac{4}{7}y + 11 \right) - \left( \frac{1}{7}y - 3 + 2 y^2 \right) - \left( \frac{2}{7}y - \frac{2}{3} y^2 + 2 \right)\]
In the polynomial, given below, separate the like terms :
y2z3, xy2z3, −5x2yz, −4y2z3, −8xz3y2, 3x2yz and 2z3y2
7a2b and −7ab2 are like terms
Sum or difference of two like terms is ______.