Advertisements
Advertisements
Question
State whether a given pair of term is of like or unlike term.
4m2p, 4mp2
Options
Like
Unlike
Solution
Unlike
Explanation:
The terms which have the same algebraic factors are called like terms. However, when the terms have different algebraic factors, these are called unlike terms.
4m2p, 4mp2 Unlike
APPEARS IN
RELATED QUESTIONS
State whether a given pair of term is of like or unlike term.
−29x, −29y
Take away:
\[\frac{6}{5} x^2 - \frac{4}{5} x^3 + \frac{5}{6} + \frac{3}{2}x \text { from }\frac{x^3}{3} - \frac{5}{2} x^2 + \frac{3}{5}x + \frac{1}{4}\]
Take away:
\[\frac{5 a^2}{2} + \frac{3 a^3}{2} + \frac{a}{3} - \frac{6}{5} \text { from } \frac{1}{3} a^3 - \frac{3}{4} a^2 - \frac{5}{2}\]
Take away:
\[\frac{y^3}{3} + \frac{7}{3} y^2 + \frac{1}{2}y + \frac{1}{2} \text { from } \frac{1}{3} - \frac{5}{3} y^2\]
Take away:
\[\frac{2}{3}ac - \frac{5}{7}ab + \frac{2}{3}bc\text { from } \frac{3}{2}ab - \frac{7}{4}ac - \frac{5}{6}bc\]
Simplify the following: \[- \frac{1}{2} a^2 b^2 c + \frac{1}{3}a b^2 c - \frac{1}{4}ab c^2 - \frac{1}{5}c b^2 a^2 + \frac{1}{6}c b^2 a - \frac{1}{7} c^2 ab + \frac{1}{8}c a^2 b .\]
The missing terms in the product −3m3n × 9(__) = _________ m4n3
Choose the pair of like terms
In an expression, we can add or subtract only ________
7a2b and −7ab2 are like terms