Advertisements
Advertisements
Question
Take away:
\[\frac{7}{4} x^3 + \frac{3}{5} x^2 + \frac{1}{2}x + \frac{9}{2}\text { from } \frac{7}{2} - \frac{x}{3} - \frac{x^2}{5}\]
Solution
The difference is given by:
\[\left( \frac{7}{2} - \frac{x}{3} - \frac{x^2}{5} \right) - \left( \frac{7 x^3}{4} + \frac{3 x^2}{5} + \frac{x}{2} + \frac{9}{2} \right)\]
\[ = \frac{7}{2} - \frac{x}{3} - \frac{x^2}{5} - \frac{7 x^3}{4} - \frac{3 x^2}{5} - \frac{x}{2} - \frac{9}{2}\]
\[= \frac{7}{2} - \frac{9}{2} - \frac{x}{3} - \frac{x}{2} - \frac{x^2}{5} - \frac{3 x^2}{5} - \frac{7 x^3}{4}\]
(Collecting like terms)
= \[\left( \frac{7 - 9}{2} \right) + \left( \frac{- 2 - 3}{6} \right)x + \left( \frac{- 1 - 3}{5} \right) x^2 - \frac{7 x^3}{4}\]
\[= - 1 - \frac{5x}{6} - \frac{4 x^2}{5} - \frac{7 x^3}{4}\] (Combining like terms )
APPEARS IN
RELATED QUESTIONS
Identify like term in the following:
−xy2, − 4yx2, 8x2, 2xy2, 7y, −11x2, −100x, −11yx, 20x2y, −6x2, y, 2xy, 3x
Take away:
\[\frac{6}{5} x^2 - \frac{4}{5} x^3 + \frac{5}{6} + \frac{3}{2}x \text { from }\frac{x^3}{3} - \frac{5}{2} x^2 + \frac{3}{5}x + \frac{1}{4}\]
Take away:
\[\frac{y^3}{3} + \frac{7}{3} y^2 + \frac{1}{2}y + \frac{1}{2} \text { from } \frac{1}{3} - \frac{5}{3} y^2\]
Take away:
\[\frac{2}{3}ac - \frac{5}{7}ab + \frac{2}{3}bc\text { from } \frac{3}{2}ab - \frac{7}{4}ac - \frac{5}{6}bc\]
Simplify the following:
x2 − 3x + 5 − \[\frac{1}{2}\] (3x2 − 5x + 7)
In the polynomial, given below, separate the like terms :
3xy, − 4yx2, 2xy2, 2.5x2y, −8yx, −3.2y2x and x2y
2pq and – 7qp are like terms
The product of two terms with like signs is a ______ term.
The product of two negative terms is a negative term.
The product of one negative and one positive term is a negative term.