Advertisements
Advertisements
Question
Simplify the following:
[5 − 3x + 2y − (2x − y)] − (3x − 7y + 9)
Solution
\[ \left[ 5 - 3x + 2y - \left( 2x - y \right) \right] - \left( 3x - 7y + 9 \right)\]
\[ = \left[ 5 - 3x + 2y - 2x + y \right] - \left( 3x - 7y + 9 \right)\]
\[ = \left[ 5 - 5x + 3y \right] - \left( 3x - 7y + 9 \right)\]
\[ = 5 - 5x + 3y - 3x + 7y - 9\]
\[ = 5 - 9 - 5x - 3x + 3y + 7y\]
\[ = - 4 - 8x + 10y\]
APPEARS IN
RELATED QUESTIONS
Take away:
\[\frac{2}{3}ac - \frac{5}{7}ab + \frac{2}{3}bc\text { from } \frac{3}{2}ab - \frac{7}{4}ac - \frac{5}{6}bc\]
Simplify the following:
\[\frac{11}{2} x^2 y - \frac{9}{4}x y^2 + \frac{1}{4}xy - \frac{1}{14} y^2 x + \frac{1}{15}y x^2 + \frac{1}{2}xy\]
Simplify the following:
\[\left( \frac{1}{3} y^2 - \frac{4}{7}y + 11 \right) - \left( \frac{1}{7}y - 3 + 2 y^2 \right) - \left( \frac{2}{7}y - \frac{2}{3} y^2 + 2 \right)\]
In the polynomial, given below, separate the like terms :
3xy, − 4yx2, 2xy2, 2.5x2y, −8yx, −3.2y2x and x2y
Find the product of the terms
3x2y , −3xy3, x2y2
If the area of a square is 36x4y2 then, its side is ____________
In the expression 25m + 14n, the type of the terms are ________ terms
2pq and – 7qp are like terms
7a2b and −7ab2 are like terms
The product of two negative terms is a negative term.