Advertisements
Advertisements
प्रश्न
In like terms, variables and their powers are the same.
विकल्प
True
False
उत्तर
This statement is True.
Explanation:
The terms having the same algebraic factors are called like terms.
APPEARS IN
संबंधित प्रश्न
State whether a given pair of term is of like or unlike term.
4m2p, 4mp2
Take away:
\[\frac{7}{4} x^3 + \frac{3}{5} x^2 + \frac{1}{2}x + \frac{9}{2}\text { from } \frac{7}{2} - \frac{x}{3} - \frac{x^2}{5}\]
Take away:
\[\frac{y^3}{3} + \frac{7}{3} y^2 + \frac{1}{2}y + \frac{1}{2} \text { from } \frac{1}{3} - \frac{5}{3} y^2\]
Take away:
\[\frac{2}{3}ac - \frac{5}{7}ab + \frac{2}{3}bc\text { from } \frac{3}{2}ab - \frac{7}{4}ac - \frac{5}{6}bc\]
Simplify the following:
\[\left( \frac{1}{3} y^2 - \frac{4}{7}y + 11 \right) - \left( \frac{1}{7}y - 3 + 2 y^2 \right) - \left( \frac{2}{7}y - \frac{2}{3} y^2 + 2 \right)\]
Simplify the following: \[- \frac{1}{2} a^2 b^2 c + \frac{1}{3}a b^2 c - \frac{1}{4}ab c^2 - \frac{1}{5}c b^2 a^2 + \frac{1}{6}c b^2 a - \frac{1}{7} c^2 ab + \frac{1}{8}c a^2 b .\]
Find the product of the terms
−2mn, (2m)2, −3mn
Sum of a – b + ab, b + c – bc and c – a – ac is ______.
Which of the following is a pair of like terms?
5a and 5b are unlike terms