Advertisements
Advertisements
प्रश्न
Simplify the following:
\[\left( \frac{1}{3} y^2 - \frac{4}{7}y + 11 \right) - \left( \frac{1}{7}y - 3 + 2 y^2 \right) - \left( \frac{2}{7}y - \frac{2}{3} y^2 + 2 \right)\]
उत्तर
\[\left( \frac{1}{3} y^2 - \frac{4}{7}y + 11 \right) - \left( \frac{1}{7}y - 3 + 2 y^2 \right) - \left( \frac{2}{7}y - \frac{2}{3} y^2 + 2 \right)\]
\[ = \frac{1}{3} y^2 - \frac{4}{7}y + 11 - \frac{1}{7}y + 3 - 2 y^2 - \frac{2}{7}y + \frac{2}{3} y^2 - 2\]
\[= \frac{1}{3} y^2 - 2 y^2 + \frac{2}{3} y^2 - \frac{4}{7}y - \frac{1}{7}y - \frac{2}{7}y + 11 + 3 - 2\]
(Collecting like terms)
= \[\left( \frac{1 - 6 + 2}{3} \right) y^2 + \left( \frac{- 4 - 1 - 2}{7} \right)y + 12\]
\[= - y^2 - 7y + 12\] (Combining like terms)
APPEARS IN
संबंधित प्रश्न
Take away:
\[\frac{2}{3}ac - \frac{5}{7}ab + \frac{2}{3}bc\text { from } \frac{3}{2}ab - \frac{7}{4}ac - \frac{5}{6}bc\]
Simplify the following:
\[\frac{11}{2} x^2 y - \frac{9}{4}x y^2 + \frac{1}{4}xy - \frac{1}{14} y^2 x + \frac{1}{15}y x^2 + \frac{1}{2}xy\]
In the expression 25m + 14n, the type of the terms are ________ terms
Identify the like terms among the following:
7x, 5y, −8x, 12y, 6z, z, −12x, −9y, 11z
Choose the pair of like terms
The product of two terms with like signs is a ______ term.
The product of two terms with unlike signs is a ______ term.
The product of two negative terms is a negative term.
Like terms in the expression n(n + 1) + 6(n – 1) are ______ and ______.
In like terms, variables and their powers are the same.