Advertisements
Advertisements
प्रश्न
Take away:
\[\frac{y^3}{3} + \frac{7}{3} y^2 + \frac{1}{2}y + \frac{1}{2} \text { from } \frac{1}{3} - \frac{5}{3} y^2\]
उत्तर
The difference is given by:
\[\left( \frac{1}{3} - \frac{5}{3} y^2 \right) - \left( \frac{y^3}{3} + \frac{7 y^2}{3} + \frac{y}{2} + \frac{1}{2} \right)\]
\[ = \frac{1}{3} - \frac{5}{3} y^2 - \frac{y^3}{3} - \frac{7 y^2}{3} - \frac{y}{2} - \frac{1}{2}\]
\[= \frac{1}{3} - \frac{1}{2} - \frac{y}{2} - \frac{5}{3} y^2 - \frac{7 y^2}{3} - \frac{y^3}{3}\] ( Collecting like terms)
= \[\left( \frac{2 - 3}{6} \right) - \frac{y}{2} + \left( \frac{- 5 - 7}{3} \right) y^2 - \frac{y^3}{3}\]
\[= - \frac{1}{6} - \frac{y}{2} - 4 y^2 - \frac{y^3}{3}\] (Combining like terms. )
APPEARS IN
संबंधित प्रश्न
State whether a given pair of term is of like or unlike term.
14xy, 42yx
Take away:
\[\frac{5 a^2}{2} + \frac{3 a^3}{2} + \frac{a}{3} - \frac{6}{5} \text { from } \frac{1}{3} a^3 - \frac{3}{4} a^2 - \frac{5}{2}\]
Simplify the following: \[- \frac{1}{2} a^2 b^2 c + \frac{1}{3}a b^2 c - \frac{1}{4}ab c^2 - \frac{1}{5}c b^2 a^2 + \frac{1}{6}c b^2 a - \frac{1}{7} c^2 ab + \frac{1}{8}c a^2 b .\]
In the polynomial, given below, separate the like terms :
y2z3, xy2z3, −5x2yz, −4y2z3, −8xz3y2, 3x2yz and 2z3y2
Identify the like terms among the following:
7x, 5y, −8x, 12y, 6z, z, −12x, −9y, 11z
7a2b and −7ab2 are like terms
Identify the like terms: 12x3y2z, – y3x2z, 4z3y2x, 6x3z2y, – 5y3x2z
Which of the following is a binomial?
The product of two terms with like signs is a ______ term.
Sum or difference of two like terms is ______.