Advertisements
Advertisements
Question
Show that: (3x + 7)2 − 84x = (3x − 7)2
Solution
\[ \text { LHS } = \left( 3x + 7 \right)^2 - 84x\]
\[ = \left( 3x + 7 \right)^2 - 4 \times 3x \times 7\]
\[ = \left( 3x - 7 \right)^2 \left[ \because \left( a + b \right)^2 - 4ab = \left( a - b \right)^2 \right]\]
= RHS
Because LHS is equal to RHS, the given equation is verified.
APPEARS IN
RELATED QUESTIONS
Express each of the following product as a monomials and verify the result in each case for x = 1:
(4x2) × (−3x) × \[\left( \frac{4}{5} x^3 \right)\]
Evaluate each of the following when x = 2, y = −1.
\[(2xy) \times \left( \frac{x^2 y}{4} \right) \times \left( x^2 \right) \times \left( y^2 \right)\]
Find the following product: \[- \frac{8}{27}xyz\left( \frac{3}{2}xy z^2 - \frac{9}{4}x y^2 z^3 \right)\]
Find the product −3y(xy + y2) and find its value for x = 4 and y = 5.
Multiply \[- \frac{3}{2} x^2 y^3 by (2x - y)\] and verify the answer for x = 1 and y = 2.
Multiply: \[\left( \frac{3}{5}x + \frac{1}{2}y \right) by \left( \frac{5}{6}x + 4y \right)\]
Multiply: \[\left( - \frac{a}{7} + \frac{a^2}{9} \right)by\left( \frac{b}{2} - \frac{b^2}{3} \right)\].
Multiply:
(3x2y − 5xy2) by \[\left( \frac{1}{5} x^2 + \frac{1}{3} y^2 \right)\].
Simplify:
(5 − x)(6 − 5x)( 2 − x)
Simplify:
(x3 − 2x2 + 3x − 4) (x −1) − (2x − 3)(x2 − x + 1)