Advertisements
Advertisements
प्रश्न
Add the following algebraic expression:
4xy2 − 7x2y, 12x2y − 6xy2, − 3x2y +5xy2
उत्तर
To add, we proceed as follows:
\[\left( 4 {xy}^2 - 7 x^2 y \right) + \left( 12 x^2 y \right) + \left( - 6 {xy}^2 \right) + \left( - 3 x^2 y + 5 {xy}^2 \right)\]
\[ = 4 {xy}^2 - 7 x^2 y + 12 x^2 y - 6 {xy}^2 - 3 x^2 y + 5 {xy}^2 \]
\[ = 4 {xy}^2 - 6 {xy}^2 + 5 {xy}^2 - 7 x^2 y + 12 x^2 y - 3 x^2 y ( \text { Collecting like terms } )\]
\[ = 3 {xy}^2 + 2 x^2 y (\text { Combining like terms })\]
APPEARS IN
संबंधित प्रश्न
Simplify combining like terms: 3a - 2b - ab - (a - b + ab) + 3ab + b - a
Subtract: -x2 + 10x - 5 from 5x - 10
Subtract: 4pq - 5q2 - 3p2 from 5p2 + 3q2 - pq
From the sum of 3x - y + 11 and - y - 11, subtract 3x - y - 11.
Add the following algebraic expression:
\[\frac{3}{2}a - \frac{5}{4}b + \frac{2}{5}c, \frac{2}{3}a - \frac{7}{2}b + \frac{7}{2}c, \frac{5}{3}a + \frac{5}{2}b - \frac{5}{4}c\]
Add:
17a2b2 + 16c; 28c − 28a2b2
The addition of – 7b and 2b is ____________
Add:
7a2bc, –3abc2, 3a2bc, 2abc2
How much is y4 – 12y2 + y + 14 greater than 17y3 + 34y2 – 51y + 68?
Each symbol given below represents an algebraic expression:
= 2x2 + 3y,
= 5x2 + 3x,
= 8y2 – 3x2 + 2x + 3y
The symbols are then represented in the expression:
Find the expression which is represented by the above symbols.