Advertisements
Advertisements
प्रश्न
Subtract:
\[x^2 y - \frac{4}{5}x y^2 + \frac{4}{3}xy \text { from } \frac{2}{3} x^2 y + \frac{3}{2}x y^2 - \frac{1}{3}xy\]
उत्तर
\[ \left( \frac{2}{3} x^2 y + \frac{3}{2}x y^2 - \frac{1}{3}xy \right) - \left( x^2 y - \frac{4}{5}x y^2 + \frac{4}{3}xy \right)\]
\[ = \frac{2}{3} x^2 y + \frac{3}{2}x y^2 - \frac{1}{3}xy - x^2 y + \frac{4}{5}x y^2 - \frac{4}{3}xy\]
\[ = \frac{2}{3} x^2 y - x^2 y + \frac{3}{2}x y^2 + \frac{4}{5}x y^2 - \frac{1}{3}xy - \frac{4}{3}xy (\text { Collecting like terms })\]
\[ = - \frac{1}{3} x^2 y + \frac{23}{10}x y^2 - \frac{5}{3}xy (\text { Combining like terms })\]
APPEARS IN
संबंधित प्रश्न
Add the following:
ab − bc, bc − ca, ca − ab
Subtract:
\[\frac{2}{3} y^3 - \frac{2}{7} y^2 - 5 \text { from }\frac{1}{3} y^3 + \frac{5}{7} y^2 + y - 2\]
Multiply: \[\left( \frac{x}{7} + \frac{x^2}{2} \right)by\left( \frac{2}{5} + \frac{9x}{4} \right)\]
The additive inverse of −37xyz is ___________
The expressions 8x + 3y and 7x + 2y cannot be added
Add: 2a + b + 3c and `"a" + 1/3"b" + 2/5"c"`
Sum of x and y is x + y.
Add the following expressions:
x3 – x2y – xy2 – y3 and x3 – 2x2y + 3xy2 + 4y
Add the following expressions:
x3y2 + x2y3 + 3y4 and x4 + 3x2y3 + 4y4
Add the following expressions:
a2 + 3ab – bc, b2 + 3bc – ca and c2 + 3ca – ab