Advertisements
Advertisements
प्रश्न
Write the following square of binomial as trinomial: (x2 − ay)2
उत्तर
We will use the identities
\[\left( a + b \right)^2 = a^2 + 2ab + b^2 \text { and } \left( a - b \right)^2 = a^2 - 2ab + b^2\] to convert the squares of binomials as trinomials.
\[ \left( x^2 - ay \right)^2 \]
\[ = \left( x^2 \right)^2 - 2 x^2 \left( ay \right) + \left( ay \right)^2 \]
\[ = x^4 - 2 x^2 ay + a^2 y^2\]
APPEARS IN
संबंधित प्रश्न
Simplify.
(a2 + 5) (b3 + 3) + 5
Simplify.
(x + y) (2x + y) + (x + 2y) (x − y)
Write the following square of binomial as trinomial: (x + 2)2
Write the following square of binomial as trinomial: (2m + 1)2
Write the following square of binomial as trinomial:
\[\left( x + \frac{x^2}{2} \right)^2\]
Write the following square of binomial as trinomial: \[\left( \frac{x}{y} - \frac{y}{x} \right)^2\]
Write the following square of binomial as trinomial: \[\left( \frac{3a}{2} - \frac{5b}{4} \right)^2\]
Product of 6a2 – 7b + 5ab and 2ab is ______.
p2q + q2r + r2q is a binomial.
Multiply the following:
`3/2 p^2 + 2/3 q^2, (2p^2 - 3q^2)`