Advertisements
Advertisements
प्रश्न
Write the following square of binomial as trinomial: \[\left( \frac{2a}{3b} + \frac{2b}{3a} \right)^2\]
उत्तर
We will use the identities
\[\left( a + b \right)^2 = a^2 + 2ab + b^2 \text { and } \left( a - b \right)^2 = a^2 - 2ab + b^2\] to convert the squares of binomials as trinomials.
\[ \left( \frac{2a}{3b} + \frac{2b}{3a} \right)^2 \]
\[ = \left( \frac{2a}{3b} \right)^2 + 2$\left( \frac{2a}{3b} \right)$\left( \frac{2b}{3a} \right) + \left( \frac{2b}{3a} \right)^2 \]
\[ = \frac{4 a^2}{9 b^2} + \frac{8}{9} + \frac{4 b^2}{9 a^2}\]
APPEARS IN
संबंधित प्रश्न
Simplify.
(t + s2) (t2 − s)
Simplify.
(a + b) (c − d) + (a − b) (c + d) + 2 (ac + bd)
Simplify.
(x + y) (2x + y) + (x + 2y) (x − y)
Write the following square of binomial as trinomial: (8a + 3b)2
Write the following square of binomial as trinomial: (2m + 1)2
Write the following square of binomial as trinomial:
\[\left( x + \frac{x^2}{2} \right)^2\]
Product of 6a2 – 7b + 5ab and 2ab is ______.
Multiply the following:
a, a5, a6
Multiply the following:
`(3/4x - 4/3 y), (2/3x + 3/2y)`
Multiply the following:
`3/2 p^2 + 2/3 q^2, (2p^2 - 3q^2)`