Advertisements
Advertisements
प्रश्न
Multiply the following:
`3/2 p^2 + 2/3 q^2, (2p^2 - 3q^2)`
उत्तर
We have,
`(3/2 p^2 + 2/3 q^2)` and `(2p^2 - 3q^2)`
∴ `(3/2 p^2 + 2/3 q^2)(2p^2 - 3q^2) = 3/2 p^2 (2p^2 - 3q^2) + 2/3 q^2 (2p^2 - 3q^2)`
= `3/2 p^2 xx 2p^2 - 9/2 p^2q^2 + 4/3 q^2p^2 - 2q^4`
= `3p^4 + (4/3 - 9/2)p^2q^2 - 2q^4`
= `3p^4 + ((8 - 27)/6)p^2q^2 - 2q^4`
= `3p^4 - 19/6 p^2q^2 - 2q^4`
APPEARS IN
संबंधित प्रश्न
Simplify.
(x2 − 5) (x + 5) + 25
Simplify.
(a2 + 5) (b3 + 3) + 5
Simplify.
(1.5x − 4y) (1.5x + 4y + 3) − 4.5x + 12y
Write the following square of binomial as trinomial: (x + 2)2
Write the following square of binomial as trinomial: (8a + 3b)2
Write the following square of binomial as trinomial: \[\left( 9a + \frac{1}{6} \right)^2\]
Write the following square of binomial as trinomial:
\[\left( x + \frac{x^2}{2} \right)^2\]
Write the following square of binomial as trinomial: \[\left( \frac{x}{y} - \frac{y}{x} \right)^2\]
Write the following square of binomial as trinomial: \[\left( \frac{3a}{2} - \frac{5b}{4} \right)^2\]
Write the following square of binomial as trinomial: \[\left( \frac{2a}{3b} + \frac{2b}{3a} \right)^2\]