Advertisements
Advertisements
प्रश्न
Multiply the following:
`3/2 p^2 + 2/3 q^2, (2p^2 - 3q^2)`
उत्तर
We have,
`(3/2 p^2 + 2/3 q^2)` and `(2p^2 - 3q^2)`
∴ `(3/2 p^2 + 2/3 q^2)(2p^2 - 3q^2) = 3/2 p^2 (2p^2 - 3q^2) + 2/3 q^2 (2p^2 - 3q^2)`
= `3/2 p^2 xx 2p^2 - 9/2 p^2q^2 + 4/3 q^2p^2 - 2q^4`
= `3p^4 + (4/3 - 9/2)p^2q^2 - 2q^4`
= `3p^4 + ((8 - 27)/6)p^2q^2 - 2q^4`
= `3p^4 - 19/6 p^2q^2 - 2q^4`
APPEARS IN
संबंधित प्रश्न
Simplify.
(x2 − 5) (x + 5) + 25
Simplify.
(t + s2) (t2 − s)
Write the following square of binomial as trinomial: (x + 2)2
Write the following square of binomial as trinomial: (2m + 1)2
Write the following square of binomial as trinomial: \[\left( \frac{x}{4} - \frac{y}{3} \right)\]
Write the following square of binomial as trinomial: \[\left( \frac{x}{y} - \frac{y}{x} \right)^2\]
Write the following square of binomial as trinomial: (a2b − bc2)2
Write the following square of binomial as trinomial: \[\left( \frac{2a}{3b} + \frac{2b}{3a} \right)^2\]
p2q + q2r + r2q is a binomial.
Multiply the following:
`(3/4x - 4/3 y), (2/3x + 3/2y)`