Advertisements
Advertisements
प्रश्न
Write the following square of binomial as trinomial: \[\left( \frac{x}{y} - \frac{y}{x} \right)^2\]
उत्तर
We will use the identities
\[\left( a + b \right)^2 = a^2 + 2ab + b^2 \text { and } \left( a - b \right)^2 = a^2 - 2ab + b^2\] to convert the squares of binomials as trinomials.
\[ \left( \frac{x}{y} - \frac{y}{x} \right)^2 \]
\[ = \left( \frac{x}{y} \right)^2 - 2\left( \frac{x}{y} \right)\left( \frac{y}{x} \right) + \left( \frac{y}{x} \right)^2 \]
\[ = \frac{x^2}{y^2} - 2 + \frac{y^2}{x^2}\]
APPEARS IN
संबंधित प्रश्न
Simplify.
(a2 + 5) (b3 + 3) + 5
Simplify.
(x + y) (x2 − xy + y2)
Simplify.
(1.5x − 4y) (1.5x + 4y + 3) − 4.5x + 12y
Write the following square of binomial as trinomial: (x + 2)2
Write the following square of binomial as trinomial: (2m + 1)2
Write the following square of binomial as trinomial:
\[\left( x + \frac{x^2}{2} \right)^2\]
Write the following square of binomial as trinomial: \[\left( \frac{x}{4} - \frac{y}{3} \right)\]
Write the following square of binomial as trinomial: (a2b − bc2)2
Multiply the following:
–7st, –1, –13st2
Multiply the following:
`3/2 p^2 + 2/3 q^2, (2p^2 - 3q^2)`