Advertisements
Advertisements
प्रश्न
Write the following square of binomial as trinomial: \[\left( \frac{x}{y} - \frac{y}{x} \right)^2\]
उत्तर
We will use the identities
\[\left( a + b \right)^2 = a^2 + 2ab + b^2 \text { and } \left( a - b \right)^2 = a^2 - 2ab + b^2\] to convert the squares of binomials as trinomials.
\[ \left( \frac{x}{y} - \frac{y}{x} \right)^2 \]
\[ = \left( \frac{x}{y} \right)^2 - 2\left( \frac{x}{y} \right)\left( \frac{y}{x} \right) + \left( \frac{y}{x} \right)^2 \]
\[ = \frac{x^2}{y^2} - 2 + \frac{y^2}{x^2}\]
APPEARS IN
संबंधित प्रश्न
Simplify.
(x2 − 5) (x + 5) + 25
Simplify.
(a + b) (c − d) + (a − b) (c + d) + 2 (ac + bd)
Simplify.
(a + b + c) (a + b − c)
Write the following square of binomial as trinomial: (2m + 1)2
Write the following square of binomial as trinomial:
\[\left( x + \frac{x^2}{2} \right)^2\]
Write the following square of binomial as trinomial: \[\left( \frac{x}{4} - \frac{y}{3} \right)\]
Write the following square of binomial as trinomial: \[\left( \frac{3a}{2} - \frac{5b}{4} \right)^2\]
Write the following square of binomial as trinomial: \[\left( \frac{2a}{3b} + \frac{2b}{3a} \right)^2\]
Multiply the following:
a, a5, a6
Multiply the following:
–7st, –1, –13st2